Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Bromobenzyl)-2,6-diisopropylaniline

Adina Cristea,* Richard A. Varga and Cristian Silvestru

Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street RO-400028, Cluj Napoca, Romania Correspondence e-mail: cristi@chem.ubbcluj.ro

Received 16 October 2007; accepted 24 October 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.134; data-to-parameter ratio = 18.2.

The asymmetric unit of the title compound, C₁₉H₂₄BrN, contains two independent molecules that are linked into chains through intermolecular $Br \cdots H$ (3.06 Å) and H...phenyl contacts (3.15 Å). Furthermore, even stronger H...phenyl contacts (2.71-3.14 Å) between the chains and four neighbouring molecules result in a three-dimensional supramolecular architecture.

Related literature

For related literature see Balazs et al. (2003, 2004, 2006); Opris et al. (2004); Fernández et al. (2007); Soran et al. (2007); Kulcsar et al. (2007); Rotar et al. (2007).

Experimental

Crystal data

C19H24BrN $M_r = 346.30$ Monoclinic, $P2_1/c$ a = 17.207 (17) Åb = 14.742 (15) Å c = 13.870 (14) Å $\beta = 94.650 \ (18)^{\circ}$

V = 3507 (6) Å ³	
Z = 8	
Mo $K\alpha$ radiation	
$\mu = 2.34 \text{ mm}^{-1}$	
T = 297 (2) K	
$0.60 \times 0.33 \times 0.31$ mm	ı

Data collection

```
Bruker SMART APEX CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker 2001)
  T_{\rm min} = 0.304, \ T_{\rm max} = 0.483
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.134$	independent and constrained
S = 1.03	refinement
7183 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
395 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
2 restraints	

27700 measured reflections

 $R_{\rm int} = 0.058$

7183 independent reflections

4220 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry and $X - H \cdots \pi$ -ring interactions (Å, °).

Cg1 is a centroid of thee benzene ring C1-C6, Cg2 is the centroid of the benzene ring C20-C25, Cg3 is the centroid of the benzene ring C27-C32.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C18−H18C···Br2	0.96	3.06	3.928 (5)	151
$C4 - H4 \cdots Cg3$	0.93	3.15	3.96(1)	147
$C25 - H25 \cdots Cg1^{i}$	0.93	2.71	3.55 (1)	151
$C23 - H23 \cdots Cg2^{ii}$	0.93	2.97	3.79(1)	147
$C31 - H31 \cdots Cg2^{iii}$	0.93	3.14	3.89(1)	140
$C10-H10\cdots Cg3^{iv}$	0.93	3.04	3.79 (1)	139

Symmetry codes: (i) $x, \frac{1}{2} - y, -\frac{1}{2} + z$, (ii) 1 - x, 1 - y, -z, (iii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$, (iv) $-x, -\frac{1}{2}+y, \frac{1}{2}-z.$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Financial support from the National University Research Council (CNCSIS 709/2007) is greatly appreciated. The authors also thank the National Center for X-ray Diffraction in Cluj Napoca for support with the solid-state structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2038).

References

- Balazs, L., Breunig, H. J., Lork, E. & Silvestru, C. (2003). Eur. J. Inorg. Chem. pp. 1361-1365.
- Balazs, L., Breunig, H. J., Lork, E., Soran, A. & Silvestru, C. (2006). Inorg. Chem. 45, 2341-2346.
- Balazs, L., Stanga, O., Breunig, H. J. & Silvestru, C. (2004). Dalton Trans. pp. 2237-2242.
- Brandenburg, K. (2006). DIAMOND. Release 3.1d. Crystal Impact GbR, Bonn, Germany
- Bruker (2000). SMART (Version 5.054) and SAINT-Plus (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fernández, E. J., Laguna, A., López-de-Luzuriaga, J. M., Monge, M., Nema, M., Olmos, M. E., Pérez, J. & Silvestru, C. (2007). Chem. Commun. pp. 571-573.
- Kulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187-2196.
- Opris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2004). Dalton Trans. pp. 3575-3585.

- Rotar, A., Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m355m356.
- Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.

Soran, A. P., Silvestru, C., Breunig, H. J., Balázs, G. & Green, J. C. (2007). Organometallics, 26, 1196–1203.
Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, o4528-o4529 [doi:10.1107/S1600536807052907]

N-(2-Bromobenzyl)-2,6-diisopropylaniline

A. Cristea, R. A. Varga and C. Silvestru

Comment

Our interest in hypervalent organometalic compounds with aryl groups containing pendant arms with N atoms able to stabilize unusual species through intramolecular coordination to a metal atom (Balazs *et al.*, 2003, 2004, 2006; Opris *et al.*, 2004; Fernández *et al.*, 2007; Soran *et al.*, 2007; Kulcsar *et al.*, 2007; Rotar *et al.*, 2007) prompted us to design new organic molecules with steric hinderence. In this paper, we present the structure of the title compound, (I).

The asymmetric unit of (I) contains two independent molecules A and B (A containing Br1 and B conatining Br2, respectively) which are chemically identical, but differ slightly in their conformations (Fig. 1). The most importand difference is the value of the dihedral angle between the planes passing through the phenyl rings of the molecules [78 (1)° for A and 89 (1)° for B].

The two molecules are linked into a chain by a weak intermoleculare interaction (Br2…H18C 3.06 Å) and a *H*…phenyl contact (H4…*Cg*3 = 3.15 Å). These chains interact further through other four *H*…phenyl interactions (H… π range 2.71–3.14 Å, see Extra Table) (Fig.2), resulting in a three-dimensional supramolecular arhitecture.

Experimental

(2-Bromobezyl)-(2,6-diisopropylbenzyl)-amine was prepared from the reaction of brombenzyl-bromide and 2,6-diisopropilaniline in 1:1 molar ratio, in CH₃CN in the presence of K_2CO_3 . The mixture was refluxed for 48 h. The solvent was removed *in vacuo* and the solid residue was extracted with ethanol. Crystals suitable for single-crystal X-ray diffraction were obtained from ethanol.

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93-0.97 Å and with U_{iso} = $1.5U_{eq}$ (C) for methyl H and U_{iso} = $1.2U_{eq}$ (C) for aryl H. The methyl groups were allowed to rotate but not to tip. The hydrogen atoms bonded to N1 and N2 were found in a difference map and were allowed to refine with isotropic displacement parameters.

Figures

Fig. 1. A view of the title compound showing two molecules in the asymmetric unit with the atomic-numbering scheme; displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Intermolecular interactions in the crystal structure of the title compound. Symmetry codes: (i) x, 1/2 - y, -1/2 + z, (ii) 1 - x, 1 - y, -z, (iii) 1 - x, 1/2 + y, 1/2 - z, (iv) -x, -1/2 + y, 1/2 - z

reflections

N-(2-Bromobenzyl)-2,6-diisopropylaniline

Crystal	data
---------	------

C ₁₉ H ₂₄ BrN	$F_{000} = 1440$
$M_r = 346.30$	$D_{\rm x} = 1.312 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4084
a = 17.207 (17) Å	$\theta = 2.3 - 20.6^{\circ}$
b = 14.742 (15) Å	$\mu = 2.34 \text{ mm}^{-1}$
c = 13.870 (14) Å	T = 297 (2) K
$\beta = 94.650 \ (18)^{\circ}$	Block, yellow
$V = 3507 (6) \text{ Å}^3$	$0.60\times0.33\times0.31~mm$
Z = 8	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	7183 independent reflections
Radiation source: fine-focus sealed tube	4220 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 297(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker 2001)	$h = -21 \rightarrow 21$
$T_{\min} = 0.304, \ T_{\max} = 0.483$	$k = -18 \rightarrow 17$
27700 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.134$	$w = 1/[\sigma^2(F_o^2) + (0.0628P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
7183 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$

395 parameters

 $\Delta\rho_{min} = -0.33 \text{ e} \text{ } \text{\AA}^{-3}$

Extinction correction: none

2 restraints Primary atom site location: structure-invariant direct methods

Special details

Experimental. Spectroscopic analysis: ¹H NMR (CDCl₃, 300 MHz): δ 7.59 (dd, 1H, H₃, ³J_{HH} = 8.97), 7.429 (dd, 1H, H5, ³J_{HH} = 6.7 Hz), 7.32 (d, 1H, H₅, ³J_{HH} = 7.5 Hz), 7.29 (d, 2H, H₆), 7.12(m, 1H, H₁₁), 4.12 (s, 2H, CH₂), 3.45 (s, 1H, NH), 3.06 (sept, 1H, CH(CH₃)₂, ³J = 6.85 Hz), 1.22 (d, 12 H, CH(CH₃)₂, ³J = 6.87 Hz); ¹³C NMR (CDCl₃, 75.47 MHz): 24,25 s [(CH₃)₂CH–]; 27,68 s [-CH(CH₃)₂]; 55,72 s [CH₂], 123,57 s [C₂]; 124,11 s [C₁₀₊₁₂]; 127,58 s [C₁₁]; 128,79 s [C₅]; 129,97 s [C₆]; 132,75 s [C₃]; 139,22 s [C₄]; 142,89 s [C₁]; 137,58 s [C₉₊₁₃];

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.08740 (3)	0.45571 (3)	0.59450 (3)	0.08102 (18)
Br2	0.27279 (3)	0.23566 (3)	0.17106 (3)	0.08471 (19)
C1	0.1518 (2)	0.4781 (2)	0.4920 (2)	0.0536 (9)
C2	0.14641 (17)	0.4235 (2)	0.4103 (2)	0.0451 (8)
C3	0.19723 (19)	0.4424 (2)	0.3403 (3)	0.0511 (8)
H3	0.1948	0.4073	0.2844	0.061*
C4	0.2511 (2)	0.5113 (2)	0.3510 (3)	0.0645 (10)
H4	0.2851	0.5219	0.3034	0.077*
C5	0.2545 (2)	0.5645 (3)	0.4324 (3)	0.0758 (12)
Н5	0.2903	0.6118	0.4394	0.091*
C6	0.2059 (2)	0.5483 (2)	0.5032 (3)	0.0719 (11)
H6	0.2087	0.5840	0.5586	0.086*
C7	0.0881 (2)	0.3477 (2)	0.4003 (3)	0.0559 (9)
H7A	0.0918	0.3120	0.4592	0.067*
H7B	0.0360	0.3731	0.3921	0.067*
C8	0.05121 (19)	0.2092 (2)	0.3135 (2)	0.0476 (8)
C9	-0.0186 (2)	0.2083 (2)	0.2549 (3)	0.0534 (9)
C10	-0.0616 (2)	0.1296 (2)	0.2484 (3)	0.0618 (9)
H10	-0.1075	0.1278	0.2082	0.074*
C11	-0.0382 (2)	0.0542 (2)	0.2998 (3)	0.0638 (10)
H11	-0.0681	0.0016	0.2946	0.077*
C12	0.0298 (2)	0.0560 (2)	0.3593 (3)	0.0614 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12	0.0452	0.0047	0.3950	0.074*
C13	0.07529 (19)	0.1330 (2)	0.3665 (2)	0.0521 (8)
C14	-0.0486 (2)	0.2900 (3)	0.1966 (3)	0.0710 (11)
H14	-0.0119	0.3400	0.2111	0.085*
C15	-0.0516 (3)	0.2724 (3)	0.0888 (4)	0.1121 (18)
H15A	-0.0860	0.2225	0.0726	0.168*
H15B	-0.0002	0.2580	0.0710	0.168*
H15C	-0.0704	0.3256	0.0544	0.168*
C16	-0.1270 (3)	0.3199 (4)	0.2250 (5)	0.137 (2)
H16A	-0.1656	0.2759	0.2032	0.206*
H16B	-0.1400	0.3775	0.1959	0.206*
H16C	-0.1254	0.3253	0.2941	0.206*
C17	0.1525 (2)	0.1301 (3)	0.4277 (3)	0.0667 (10)
H17	0.1717	0.1925	0.4354	0.080*
C18	0.2125 (2)	0.0761 (3)	0.3792 (3)	0.0883 (13)
H18A	0.1977	0.0133	0.3772	0.132*
H18B	0.2623	0.0825	0.4150	0.132*
H18C	0.2157	0.0981	0.3145	0.132*
C19	0.1435 (3)	0.0919 (4)	0.5285 (3)	0.119 (2)
H19A	0.1085	0.1296	0.5612	0.178*
H19B	0.1934	0.0906	0.5647	0.178*
H19C	0.1228	0.0314	0.5229	0.178*
C20	0.33447 (19)	0.2507 (2)	0.0648 (2)	0.0488 (8)
C21	0.38118 (18)	0.3273 (2)	0.0587 (2)	0.0437 (7)
C22	0.4236 (2)	0.3337 (2)	-0.0213(2)	0.0583 (9)
H22	0 4555	0 3839	-0.0280	0.070*
C23	0.4198 (3)	0.2671 (3)	-0.0916(3)	0.0779(12)
H23	0 4490	0.2726	-0.1449	0.093*
C24	0.3734(2)	0.1936 (3)	-0.0826(3)	0.0732 (11)
H24	0.3709	0 1488	-0.1300	0.088*
C25	0.3306(2)	0 1846 (2)	-0.0050(3)	0.0619(10)
H25	0 2990	0.1341	0.0007	0.074*
C26	0.3839(2)	0.3989(2)	0.1358(2)	0.0534 (8)
H26A	0.3317	0.4221	0.1414	0.064*
H26B	0.4020	0.3720	0 1973	0.064*
C27	0.43522 (19)	0.5466 (2)	0.1975 0.1832(2)	0.0481 (8)
C28	0.43322(19) 0.38287(19)	0.5400(2)	0.1692(2)	0.0401(0) 0.0522(8)
C29	0.38207(17)	0.6101(2)	0.1001(2) 0.2329(3)	0.0522(0)
H29	0.3539	0.7379	0.22323 (3)	0.081*
C30	0.3339 0.4422(3)	0.6892 (3)	0.3101 (3)	0.001
H30	0.4450	0.7383	0.3524	0.0755 (12)
C31	0.4430	0.7385	0.3261 (3)	0.0705(11)
H31	0.5280	0.6194	0.3700	0.085*
C32	0.3200	0.5154	0.2633 (3)	0.0565 (9)
C33	0.1900(2) 0.3235(2)	0.5755(2)	0.0810(3)	0.0303(9) 0.0704(11)
UJJ H33	0.3255 (2)	0.5578	0.0581	0.08/*
C34	0.2454 (3)	0.5570	0.1035 (1)	0.161 (3)
UJ7 H34A	0.2496	0.7146	0.1269	0.101 (3)
H3/R	0.2756	0.6154	0.1207	0.241*
11,540	0.2230	0.0154	0.1321	0.471

H34C	0.2104	0.6515	0.0459	0.241*
C35	0.3519 (3)	0.6745 (4)	-0.0009 (3)	0.1128 (18)
H35A	0.3122	0.6761	-0.0536	0.169*
H35B	0.3980	0.6467	-0.0222	0.169*
H35C	0.3638	0.7352	0.0206	0.169*
C36	0.5474 (2)	0.4683 (3)	0.2809 (3)	0.0757 (12)
H36	0.5248	0.4147	0.2475	0.091*
C37	0.6232 (3)	0.4892 (4)	0.2376 (4)	0.1159 (18)
H37A	0.6135	0.4976	0.1691	0.174*
H37B	0.6589	0.4397	0.2500	0.174*
H37C	0.6454	0.5436	0.2662	0.174*
C38	0.5624 (3)	0.4441 (3)	0.3879 (4)	0.128 (2)
H38A	0.5928	0.3895	0.3943	0.191*
H38B	0.5135	0.4349	0.4152	0.191*
H38C	0.5903	0.4927	0.4213	0.191*
N1	0.10011 (18)	0.2884 (2)	0.3183 (2)	0.0568 (8)
N2	0.43507 (18)	0.47372 (19)	0.1151 (2)	0.0542 (7)
H2	0.428 (3)	0.482 (3)	0.0571 (15)	0.109 (18)*
H1	0.092 (2)	0.322 (2)	0.267 (2)	0.092 (15)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0975 (4)	0.0830 (3)	0.0650 (3)	0.0026 (2)	0.0213 (2)	-0.0153 (2)
Br2	0.1145 (4)	0.0704 (3)	0.0735 (3)	-0.0334 (2)	0.0336 (3)	-0.0005 (2)
C1	0.057 (2)	0.0439 (19)	0.060 (2)	0.0026 (16)	0.0021 (17)	-0.0036 (16)
C2	0.0443 (19)	0.0374 (17)	0.053 (2)	0.0013 (14)	-0.0015 (15)	0.0014 (15)
C3	0.052 (2)	0.0438 (19)	0.056 (2)	-0.0004 (16)	0.0000 (16)	0.0046 (16)
C4	0.056 (2)	0.053 (2)	0.084 (3)	-0.0081 (18)	0.002 (2)	0.016 (2)
C5	0.071 (3)	0.056 (2)	0.098 (3)	-0.020 (2)	-0.005 (3)	0.000 (2)
C6	0.078 (3)	0.056 (2)	0.079 (3)	-0.007 (2)	-0.010 (2)	-0.015 (2)
C7	0.056 (2)	0.048 (2)	0.065 (2)	-0.0078 (16)	0.0126 (18)	-0.0139 (17)
C8	0.049 (2)	0.0422 (18)	0.053 (2)	-0.0100 (15)	0.0095 (17)	-0.0102 (15)
C9	0.054 (2)	0.0411 (19)	0.065 (2)	-0.0045 (16)	0.0055 (18)	-0.0031 (16)
C10	0.055 (2)	0.056 (2)	0.074 (2)	-0.0089 (18)	-0.0058 (19)	-0.0026 (19)
C11	0.064 (3)	0.046 (2)	0.081 (3)	-0.0148 (17)	-0.005 (2)	-0.0007 (19)
C12	0.063 (2)	0.048 (2)	0.071 (2)	-0.0078 (18)	-0.006 (2)	0.0029 (18)
C13	0.048 (2)	0.052 (2)	0.056 (2)	-0.0046 (16)	0.0005 (16)	-0.0087 (17)
C14	0.072 (3)	0.051 (2)	0.089 (3)	-0.0002 (19)	-0.001 (2)	0.009 (2)
C15	0.150 (5)	0.093 (4)	0.093 (4)	0.017 (3)	0.009 (3)	0.031 (3)
C16	0.142 (5)	0.100 (4)	0.176 (6)	0.063 (4)	0.047 (4)	0.039 (4)
C17	0.057 (2)	0.064 (2)	0.076 (3)	-0.0052 (19)	-0.009 (2)	-0.007 (2)
C18	0.055 (3)	0.115 (4)	0.095 (3)	0.002 (2)	0.008 (2)	-0.010 (3)
C19	0.079 (3)	0.209 (6)	0.066 (3)	0.015 (4)	-0.008 (2)	-0.001 (4)
C20	0.053 (2)	0.049 (2)	0.0435 (19)	-0.0018 (15)	-0.0020 (15)	0.0021 (15)
C21	0.0465 (19)	0.0418 (18)	0.0415 (18)	-0.0037 (14)	-0.0040 (15)	0.0008 (14)
C22	0.060 (2)	0.058 (2)	0.058 (2)	-0.0121 (17)	0.0119 (18)	-0.0073 (18)
C23	0.087 (3)	0.092 (3)	0.057 (2)	-0.015 (2)	0.021 (2)	-0.023 (2)

C24	0.086 (3)	0.072 (3)	0.061 (2)	-0.017 (2)	0.006 (2)	-0.026 (2)
C25	0.069 (3)	0.052 (2)	0.063 (2)	-0.0127 (18)	-0.007 (2)	-0.0057 (18)
C26	0.060 (2)	0.0476 (19)	0.053 (2)	-0.0115 (16)	0.0066 (17)	-0.0043 (16)
C27	0.051 (2)	0.0449 (19)	0.050 (2)	-0.0129 (16)	0.0118 (16)	-0.0045 (15)
C28	0.051 (2)	0.048 (2)	0.059 (2)	-0.0067 (16)	0.0111 (17)	0.0016 (17)
C29	0.070 (3)	0.051 (2)	0.084 (3)	0.0049 (19)	0.020 (2)	-0.003 (2)
C30	0.092 (3)	0.063 (3)	0.072 (3)	-0.011 (2)	0.018 (3)	-0.022 (2)
C31	0.082 (3)	0.069 (3)	0.059 (2)	-0.017 (2)	-0.002 (2)	-0.011 (2)
C32	0.053 (2)	0.054 (2)	0.063 (2)	-0.0114 (17)	0.0042 (18)	-0.0030 (18)
C33	0.063 (3)	0.069 (3)	0.079 (3)	-0.005 (2)	-0.001 (2)	0.016 (2)
C34	0.066 (3)	0.295 (9)	0.120 (5)	0.017 (5)	0.007 (3)	0.050 (5)
C35	0.102 (4)	0.149 (5)	0.086 (3)	-0.016 (3)	-0.003 (3)	0.039 (3)
C36	0.066 (3)	0.061 (2)	0.098 (3)	-0.007 (2)	-0.008 (2)	-0.001 (2)
C37	0.075 (3)	0.113 (4)	0.161 (5)	0.018 (3)	0.023 (3)	0.019 (4)
C38	0.132 (5)	0.108 (4)	0.139 (5)	0.007 (3)	-0.019 (4)	0.052 (4)
N1	0.070 (2)	0.0464 (17)	0.0551 (19)	-0.0163 (15)	0.0106 (16)	-0.0071 (15)
N2	0.067 (2)	0.0471 (17)	0.0500 (19)	-0.0166 (14)	0.0114 (15)	-0.0080 (14)

Geometric parameters (Å, °)

Br1—C1	1.901 (4)	C20—C25	1.371 (5)
Br2—C20	1.898 (4)	C20—C21	1.393 (4)
C1—C2	1.387 (5)	C21—C22	1.380 (4)
C1—C6	1.393 (5)	C21—C26	1.500 (4)
C2—C3	1.386 (4)	C22—C23	1.381 (5)
C2—C7	1.501 (4)	C22—H22	0.9300
C3—C4	1.376 (5)	C23—C24	1.358 (6)
С3—Н3	0.9300	С23—Н23	0.9300
C4—C5	1.372 (6)	C24—C25	1.359 (5)
C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.362 (6)	C25—H25	0.9300
С5—Н5	0.9300	C26—N2	1.454 (4)
С6—Н6	0.9300	C26—H26A	0.9700
C7—N1	1.462 (4)	С26—Н26В	0.9700
С7—Н7А	0.9700	C27—C28	1.392 (5)
С7—Н7В	0.9700	C27—C32	1.398 (5)
C8—C13	1.387 (5)	C27—N2	1.430 (4)
C8—C9	1.396 (5)	C28—C29	1.378 (5)
C8—N1	1.438 (4)	C28—C33	1.518 (5)
C9—C10	1.374 (5)	C29—C30	1.361 (6)
C9—C14	1.518 (5)	С29—Н29	0.9300
C10—C11	1.364 (5)	C30—C31	1.355 (6)
C10—H10	0.9300	С30—Н30	0.9300
C11—C12	1.375 (5)	C31—C32	1.386 (5)
C11—H11	0.9300	C31—H31	0.9300
C12—C13	1.378 (5)	C32—C36	1.512 (5)
C12—H12	0.9300	C33—C34	1.487 (6)
C13—C17	1.519 (5)	C33—C35	1.502 (6)
C14—C16	1.502 (6)	С33—Н33	0.9800

C14—C15	1.514 (6)	C34—H34A	0.9600
C14—H14	0.9800	C34—H34B	0.9600
C15—H15A	0.9600	C34—H34C	0.9600
C15—H15B	0.9600	C35—H35A	0.9600
C15—H15C	0.9600	С35—Н35В	0.9600
C16—H16A	0.9600	С35—Н35С	0.9600
C16—H16B	0.9600	C36—C37	1.511 (6)
C16—H16C	0.9600	C36—C38	1.527 (6)
C17—C18	1.505 (5)	С36—Н36	0.9800
C17—C19	1.526 (6)	С37—Н37А	0.9600
С17—Н17	0.9800	С37—Н37В	0.9600
C18—H18A	0.9600	С37—Н37С	0.9600
C18—H18B	0.9600	C38—H38A	0.9600
C18—H18C	0.9600	C38—H38B	0.9600
C19—H19A	0.9600	C38—H38C	0.9600
C19—H19B	0.9600	N1—H1	0.863 (18)
С19—Н19С	0.9600	N2—H2	0.814 (19)
C2—C1—C6	121.5 (3)	C22—C21—C20	116.7 (3)
C2C1Br1	120.4 (3)	C22—C21—C26	122.5 (3)
C6—C1—Br1	118.1 (3)	C20—C21—C26	120.8 (3)
C3—C2—C1	116.9 (3)	C21—C22—C23	121.4 (3)
C3—C2—C7	122.7 (3)	C21—C22—H22	119.3
C1—C2—C7	120.5 (3)	C23—C22—H22	119.3
C4—C3—C2	122.0 (3)	C24—C23—C22	119.8 (4)
С4—С3—Н3	119.0	С24—С23—Н23	120.1
С2—С3—Н3	119.0	C22—C23—H23	120.1
C5—C4—C3	119.7 (4)	C23—C24—C25	120.7 (4)
C5—C4—H4	120.2	C23—C24—H24	119.6
C3—C4—H4	120.2	C25—C24—H24	119.6
C6—C5—C4	120.3 (4)	C24—C25—C20	119.5 (3)
С6—С5—Н5	119.8	C24—C25—H25	120.3
C4—C5—H5	119.8	C20—C25—H25	120.3
C5—C6—C1	119.7 (4)	N2—C26—C21	112.2 (3)
С5—С6—Н6	120.2	N2—C26—H26A	109.2
С1—С6—Н6	120.2	C21—C26—H26A	109.2
N1—C7—C2	112.4 (3)	N2—C26—H26B	109.2
N1—C7—H7A	109.1	C21—C26—H26B	109.2
С2—С7—Н7А	109.1	H26A—C26—H26B	107.9
N1—C7—H7B	109.1	C28—C27—C32	121.0 (3)
С2—С7—Н7В	109.1	C28—C27—N2	120.2 (3)
H7A—C7—H7B	107.9	C32—C27—N2	118.7 (3)
C13—C8—C9	120.5 (3)	C29—C28—C27	118.1 (3)
C13—C8—N1	119.0 (3)	C29—C28—C33	120.4 (3)
C9—C8—N1	120.5 (3)	C27—C28—C33	121.4 (3)
C10—C9—C8	118.7 (3)	C30—C29—C28	121.1 (4)
C10-C9-C14	118.5 (3)	С30—С29—Н29	119.4
C8—C9—C14	122.8 (3)	C28—C29—H29	119.4
C11—C10—C9	121.3 (3)	C31—C30—C29	120.8 (4)
C11-C10-H10	119.4	С31—С30—Н30	119.6

С9—С10—Н10	119.4	С29—С30—Н30	119.6
C10-C11-C12	119.9 (3)	C30—C31—C32	120.8 (4)
C10-C11-H11	120.0	С30—С31—Н31	119.6
C12—C11—H11	120.0	С32—С31—Н31	119.6
C11—C12—C13	120.6 (3)	C31—C32—C27	118.0 (3)
C11—C12—H12	119.7	C31—C32—C36	120.1 (3)
C13—C12—H12	119.7	C27—C32—C36	121.9 (3)
C12—C13—C8	119.0 (3)	C34—C33—C35	109.9 (4)
C12—C13—C17	118.9 (3)	C34—C33—C28	113.7 (4)
C8—C13—C17	122.0 (3)	C35—C33—C28	112.0 (3)
C16—C14—C15	110.5 (4)	С34—С33—Н33	107.0
C16—C14—C9	111.5 (4)	С35—С33—Н33	107.0
C15—C14—C9	111.9 (3)	С28—С33—Н33	107.0
C16—C14—H14	107.6	С33—С34—Н34А	109.5
C15—C14—H14	107.6	C33—C34—H34B	109.5
C9—C14—H14	107.6	H34A—C34—H34B	109.5
C14—C15—H15A	109.5	С33—С34—Н34С	109.5
C14—C15—H15B	109.5	H34A—C34—H34C	109.5
H15A—C15—H15B	109.5	H34B—C34—H34C	109.5
C14—C15—H15C	109.5	С33—С35—Н35А	109.5
H15A—C15—H15C	109.5	С33—С35—Н35В	109.5
H15B—C15—H15C	109.5	H35A—C35—H35B	109.5
C14—C16—H16A	109.5	С33—С35—Н35С	109.5
C14—C16—H16B	109.5	H35A—C35—H35C	109.5
H16A—C16—H16B	109.5	H35B—C35—H35C	109.5
C14—C16—H16C	109.5	C37—C36—C32	110.9 (4)
H16A—C16—H16C	109.5	C37—C36—C38	110.5 (4)
H16B—C16—H16C	109.5	C32—C36—C38	112.9 (4)
C18—C17—C13	111.4 (3)	С37—С36—Н36	107.4
C18—C17—C19	109.8 (4)	С32—С36—Н36	107.4
C13—C17—C19	111.9 (3)	С38—С36—Н36	107.4
С18—С17—Н17	107.8	С36—С37—Н37А	109.5
С13—С17—Н17	107.8	С36—С37—Н37В	109.5
С19—С17—Н17	107.8	Н37А—С37—Н37В	109.5
C17—C18—H18A	109.5	С36—С37—Н37С	109.5
C17—C18—H18B	109.5	H37A—C37—H37C	109.5
H18A—C18—H18B	109.5	Н37В—С37—Н37С	109.5
C17—C18—H18C	109.5	C36—C38—H38A	109.5
H18A—C18—H18C	109.5	С36—С38—Н38В	109.5
H18B-C18-H18C	109.5	H38A—C38—H38B	109.5
С17—С19—Н19А	109.5	С36—С38—Н38С	109.5
С17—С19—Н19В	109.5	H38A—C38—H38C	109.5
H19A—C19—H19B	109.5	H38B—C38—H38C	109.5
С17—С19—Н19С	109.5	C8—N1—C7	113.7 (3)
H19A—C19—H19C	109.5	C8—N1—H1	112 (3)
H19B—C19—H19C	109.5	C7—N1—H1	106 (3)
C25—C20—C21	121.9 (3)	C27—N2—C26	114.1 (3)
C25—C20—Br2	117.9 (3)	C27—N2—H2	122 (3)
C21—C20—Br2	120.2 (2)	C26—N2—H2	106 (3)

C6—C1—C2—C3	-0.2(5)		Br2—C20—C21—C26		0.3 (4)
Br1—C1—C2—C3	-177.8 (2)		C20—C21—C22—C23		0.0 (5)
C6—C1—C2—C7	179.5 (3)		C26—C21—C22—C23		-179.7 (4)
Br1—C1—C2—C7	1.8 (4)		C21—C22—C23—C24		0.1 (6)
C1—C2—C3—C4	0.5 (5)		C22—C23—C24—C25		-0.1 (7)
C7—C2—C3—C4	-179.1 (3)		C23—C24—C25—C20		0.0 (6)
C2—C3—C4—C5	-1.0 (5)		C21—C20—C25—C24		0.0 (5)
C3—C4—C5—C6	1.1 (6)		Br2-C20-C25-C24		179.4 (3)
C4—C5—C6—C1	-0.8 (6)		C22-C21-C26-N2		0.5 (5)
C2—C1—C6—C5	0.3 (6)		C20-C21-C26-N2		-179.1 (3)
Br1—C1—C6—C5	178.0 (3)		C32—C27—C28—C29		1.9 (5)
C3—C2—C7—N1	9.6 (5)		N2-C27-C28-C29		-176.5 (3)
C1—C2—C7—N1	-170.1 (3)		C32—C27—C28—C33		179.6 (3)
C13—C8—C9—C10	-2.0 (5)		N2-C27-C28-C33		1.2 (5)
N1—C8—C9—C10	176.6 (3)		C27—C28—C29—C30		-0.7 (5)
C13—C8—C9—C14	179.0 (3)		C33—C28—C29—C30		-178.4 (3)
N1—C8—C9—C14	-2.4 (5)		C28—C29—C30—C31		-0.8 (6)
C8—C9—C10—C11	1.7 (5)		C29—C30—C31—C32		1.1 (6)
C14—C9—C10—C11	-179.3 (4)		C30—C31—C32—C27		0.1 (6)
C9—C10—C11—C12	-0.2 (6)		C30—C31—C32—C36		178.4 (4)
C10-C11-C12-C13	-1.0 (6)		C28—C27—C32—C31		-1.6 (5)
C11—C12—C13—C8	0.7 (5)		N2-C27-C32-C31		176.8 (3)
C11—C12—C13—C17	-176.0 (3)		C28—C27—C32—C36		-179.9 (3)
C9—C8—C13—C12	0.9 (5)		N2-C27-C32-C36		-1.5 (5)
N1—C8—C13—C12	-177.7 (3)		C29—C28—C33—C34		-43.1 (5)
C9—C8—C13—C17	177.4 (3)		C27—C28—C33—C34		139.3 (5)
N1—C8—C13—C17	-1.2 (5)		C29—C28—C33—C35		82.3 (5)
C10-C9-C14-C16	60.7 (5)		C27—C28—C33—C35		-95.4 (4)
C8—C9—C14—C16	-120.3 (5)		C31—C32—C36—C37		-85.3 (5)
C10—C9—C14—C15	-63.6 (5)		C27—C32—C36—C37		93.0 (5)
C8—C9—C14—C15	115.4 (4)		C31—C32—C36—C38		39.4 (5)
C12-C13-C17-C18	73.0 (5)		C27—C32—C36—C38		-142.4 (4)
C8—C13—C17—C18	-103.5 (4)		C13—C8—N1—C7		-85.2 (4)
C12—C13—C17—C19	-50.4 (5)		C9-C8-N1-C7		96.2 (4)
C8—C13—C17—C19	133.1 (4)		C2-C7-N1-C8		173.0 (3)
C25—C20—C21—C22	0.0 (5)		C28—C27—N2—C26		-90.3 (4)
Br2—C20—C21—C22	-179.4 (2)		C32—C27—N2—C26		91.2 (4)
C25—C20—C21—C26	179.6 (3)		C21—C26—N2—C27		175.8 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	$D \cdots A$	D—H··· A
C18—H18C…Br2		0.96	3.06	3.928 (5)	151

X—*H*··· π -ring interactions. Cg1 is a centroid of the benzene ring C1–C6, Cg2 is a centroid of the benzene ring C20–C25, Cg3 is a centroid of the benzene ring C27–C32

Y - X - Cg	Х—Н	H…Cg	X···Cg	<i>X</i> —H⋯ <i>Cg</i>
C4—H4…Cg3	0.93	3.15	3.96 (1)	147

C25—H25…Cg1 ⁱ	0.93	2.71	3.55 (1)	151
C23—H23…Cg2 ⁱⁱ	0.93	2.97	3.79 (1)	147
C31—H31…Cg2 ⁱⁱⁱ	0.93	3.14	3.89 (1)	140
C10—H10…Cg3 ^{iv}	0.93	3.04	3.79 (1)	139
Symmetry code: (i) x , $1/2 - y$, $-1/2 + z$, (ii) $1 - x$, $1 - y$, $-z$, (iii) $1 - x$, $1/2 + y$, $1/2 - z$, (iv) $-x$, $-1/2 + y$, $1/2 - z$				

